vertical slip form - Übersetzung nach russisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

vertical slip form - Übersetzung nach russisch

MATHEMATICS CONCEPT
Vertical space; Horizontal space; Vertical subspace; Horizontal subspace; Horizontal bundle; Horizontal form; Vertical vector field; Vertical bundle

vertical slip form      

строительное дело

вертикально-скользящая опалубка

vertical slip form      
вертикально-скользящая опалубка
engobe         
  • [[African red slip ware]]: moulded [[Mithras]] slaying the bull, 400 ± 50 AD.
  • Charger with Charles II in the [[Boscobel Oak]], English, c. 1685. The plate's diameter is 43 cm; such large plates, for display rather than use, take slip-trailing to an extreme, building up lattices of thick trails of slip.
  • [[Chinese porcelain]] sugar bowl with combed, slip-marbled decoration, c. 1795
LIQUID MIXTURE OR SLURRY OF CLAY AND/OR OTHER MATERIALS SUSPENDED IN WATER
Engobe; Clay slip; Ceramic slip

[in'gəub]

существительное

общая лексика

ангоб (в керамике)

Definition

slip carriage
(also slip coach)
¦ noun Brit. historical a railway carriage on an express which could be detached so as to come to rest at a station where the main part of the train did not stop.

Wikipedia

Vertical and horizontal bundles

In mathematics, the vertical bundle and the horizontal bundle are vector bundles associated to a smooth fiber bundle. More precisely, given a smooth fiber bundle π : E B {\displaystyle \pi \colon E\to B} , the vertical bundle V E {\displaystyle VE} and horizontal bundle H E {\displaystyle HE} are subbundles of the tangent bundle T E {\displaystyle TE} of E {\displaystyle E} whose Whitney sum satisfies V E H E T E {\displaystyle VE\oplus HE\cong TE} . This means that, over each point e E {\displaystyle e\in E} , the fibers V e E {\displaystyle V_{e}E} and H e E {\displaystyle H_{e}E} form complementary subspaces of the tangent space T e E {\displaystyle T_{e}E} . The vertical bundle consists of all vectors that are tangent to the fibers, while the horizontal bundle requires some choice of complementary subbundle.

To make this precise, define the vertical space V e E {\displaystyle V_{e}E} at e E {\displaystyle e\in E} to be ker ( d π e ) {\displaystyle \ker(d\pi _{e})} . That is, the differential d π e : T e E T b B {\displaystyle d\pi _{e}\colon T_{e}E\to T_{b}B} (where b = π ( e ) {\displaystyle b=\pi (e)} ) is a linear surjection whose kernel has the same dimension as the fibers of π {\displaystyle \pi } . If we write F = π 1 ( b ) {\displaystyle F=\pi ^{-1}(b)} , then V e E {\displaystyle V_{e}E} consists of exactly the vectors in T e E {\displaystyle T_{e}E} which are also tangent to F {\displaystyle F} . The name is motivated by low-dimensional examples like the trivial line bundle over a circle, which is sometimes depicted as a vertical cylinder projecting to a horizontal circle. A subspace H e E {\displaystyle H_{e}E} of T e E {\displaystyle T_{e}E} is called a horizontal space if T e E {\displaystyle T_{e}E} is the direct sum of V e E {\displaystyle V_{e}E} and H e E {\displaystyle H_{e}E} .

The disjoint union of the vertical spaces VeE for each e in E is the subbundle VE of TE; this is the vertical bundle of E. Likewise, provided the horizontal spaces H e E {\displaystyle H_{e}E} vary smoothly with e, their disjoint union is a horizontal bundle. The use of the words "the" and "a" here is intentional: each vertical subspace is unique, defined explicitly by ker ( d π e ) {\displaystyle \ker(d\pi _{e})} . Excluding trivial cases, there are an infinite number of horizontal subspaces at each point. Also note that arbitrary choices of horizontal space at each point will not, in general, form a smooth vector bundle; they must also vary in an appropriately smooth way.

The horizontal bundle is one way to formulate the notion of an Ehresmann connection on a fiber bundle. Thus, for example, if E is a principal G-bundle, then the horizontal bundle is usually required to be G-invariant: such a choice is equivalent to a connection on the principal bundle. This notably occurs when E is the frame bundle associated to some vector bundle, which is a principal GL n {\displaystyle \operatorname {GL} _{n}} bundle.

Übersetzung von &#39vertical slip form&#39 in Russisch